Timber Beam-Cont. Beam Example 1-Floor Beam B-1

Element:C:/DCC/Timber12/Projects/Cont Beam Example 1-Floor Beam B-1.rtfDescription:6/18/2015 10:16:28 AM

Company: User: Software: Timber Design 12.0

Timber Design 1 - Option 1 - Design of Member 1 - 3 1/8''x16 1/2'' 🗸 🖫

Design Data

Design of Member 1 - 3 1/8''x16 1/2'' 🖌						
Material type is 20F-V3-Un-Balanced Layup-Glulam - Western						
Check for repetitive use? Yes	Top flange bracing is Fully Braced	E _{bx} : 1600 ksi				
Moist use? No	Bottom flange bracing is Braced At Inflection Points	E _{by} : 1500 ksi				
$I_x = 1169.8 \text{ in}^4$ $S_x = 141.8 \text{ in}^3$	$I_y = 42 \text{ in}^4$ $S_y = 26.9 \text{ in}^3$	G assumed as .06E				
Snow $C_d = 1.15$	This is not a spaced column	F _b : 2 ksi				
Side loaded? No	$K_x = 1$	F _t : 0.975 ksi				
Overstress factor = 1	$L_x =$	F _c : 1.55 ksi				
Allowable Roof live load deflection = $L/240$	$K_y = 1$	$F_{c\square}$: 0.56 ksi				
Allowable Roof total load deflection = $L/180$	$L_y =$	F _v : 0.265 ksi				
Member weight used in analysis $= 0.01$ klf	Area = 51.56 in^2	Actual density: 31.2 pcf				

Critical Design Checks

	Critical reaction	Axial	Bending - X	Bending -Y	Shear	LL Defl.	TL Defl.
	K	ksi	ksi	ksi	ksi	in	in
Gov. Value	3.968	0.018	2.03	0	0.094	-1.1677	-1.6366
Allowable	6.791	1.121	2.293	0	0.305	1.2885	1.718
% of Allow.	581	2 🗸	891	0 🗸	31 🗸	90🗸	95🗸
Location	0	13.5446	12.8847	0	1.69838	12.8848	12.8848

Notes:

- Member has an actual/allowable ratio in span 1 of $95 \sqrt{\%}$.
- Design is governed by total deflection
- Governing load combination is Dead+0.75*Wind in Pos X+0.75*Floor Live+0.75*Snow Condition 2 w/Pattern Loads
- Axial capacity of member is 6.64 K.
- Maximum hanger forces: 3.968 K (Left) and 3.855 K (Right).

Minimum Bearing

Span	Actual Length	Left Support Min. Bearing	Right Support Min. Bearing	
	ft	in	in	
1	25.7694	2.29	2.225	

Notes:

- Locations of maximum stress, moment, etc. are measured from the left end of the member.
- Bearing across full width of beam is required.
- Structural adequacy of supporting members must be confirmed.
- Bearing lengths required may be limited by bearing stress on supporting members.
- A negative reaction indicates that the beam must be fastened to the support to resist uplift.
- See manufacturer's literature for side loaded connection requirements.
- Cantilever deflection allowables are based on twice the span length.
- Timber design is governed by NDS 2005.